Zobrazit minimální záznam

dc.contributor.authorHarasim, Petrcze
dc.contributor.authorValdman, Jancze
dc.date.accessioned2021-01-18T09:46:18Z
dc.date.available2021-01-18T09:46:18Z
dc.date.issued2014eng
dc.identifier.issn0023-5954eng
dc.identifier.urihttps://dspace.jcu.cz/handle/123456789/98
dc.description.abstractWe verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart–Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter "beta". The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.eng
dc.formatp. 978-1002eng
dc.language.isoengeng
dc.publisherÚstav teorie informace a automatizace AV ČReng
dc.relation.ispartofKybernetika, volume 50, issue: 6eng
dc.subjectobstacle problemeng
dc.subjecta posteriori error estimateeng
dc.subjectfunctional majoranteng
dc.subjectfinite element methodeng
dc.subjectvariational inequalitieseng
dc.subjectRaviart–Thomas elementseng
dc.titleVerification of functional a posteriori error estimates for obstacle problem in 2Deng
dc.typearticleeng
dc.identifier.obd43876127eng
dc.peerreviewedyeseng
dc.publicationstatuspostprinteng
dc.identifier.doi10.14736/kyb-2014-6-0978eng


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v

Zobrazit minimální záznam