• Přihlásit se
    Zobrazit záznam 
    •   Domovská stránka repozitáře publikací JU
    • Kvalifikační práce
    • Bakalářské práce
    • Přírodovědecká fakulta
    • Zobrazit záznam
    •   Domovská stránka repozitáře publikací JU
    • Kvalifikační práce
    • Bakalářské práce
    • Přírodovědecká fakulta
    • Zobrazit záznam
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving Generalization of Deep Convolutional Neural Networks for Acoustic Scene Classification

    Thumbnail
    Zobrazit/otevřít
    Plný text práce (5.168Mb)
    Posudek vedoucího práce (112.8Kb)
    Posudek oponenta práce (112.8Kb)
    Průběh obhajoby práce (181.7Kb)
    Datum
    2018
    Autor
    Paischer, Fabian
    Metadata
    Zobrazit celý záznam
    Abstrakt
    In recent years deep learning has become one of the most popular machine learning techniques for a vast variety of complex problems. An example for such a task is to mirror the human auditory system to classify audio recordings according to the location they were recorded in. This work focuses mainly on the Acoustic Scene Classification task proposed by the IEEE DCASE Challenge. The dataset for Acoustic Scene Classification consists of recordings from distinct recording locations. The aim of the challenge is to classify an unseen test set of recordings. In the challenge of 2016 the training and test set did not differ significantly. In the challenge of 2017, however, the test set originated from a different distribution, implying a strong need for generalization. In the course of this work, the initial implementation consisting of a Deep Convolutional Neural Network for the DCASE 2016 challenge submission (done in Lasagne) was re-implemented in Keras. An extension of the ADAM optimizer (AMSGrad) was investigated for improvement in generalization. Other submissions to the DCASE 2017 challenge suggest that different types of spectrograms might be key for better generalization. Therefore experiments utilizing different kinds of spectrograms were conducted. Furthermore, different interpolation algorithms were used for data augmentation, with some of them yielding significant improvements in classification accuracy and generalization. For different spectrogram dimensions, slight adjustments in the network architecture also resulted in a performance gain. To better understand what different models "see" and what they focus on, their filters, and activations were visualized and compared for differences. Finally the adjustments which led to better generalization on the dataset of the DCASE 2016 challenge were tested on the dataset of the DCASE 2017 challenge, leading to an improvement over all submissions to the DCASE 2017 challenge from the Institute of Computational Perception.
    URI
    https://dspace.jcu.cz/handle/123456789/38568
    Kolekce
    • Přírodovědecká fakulta

    DSpace software copyright © 2002-2016  DuraSpace
    Kontaktujte nás | Vyjádření názoru | Na tomto webu jsou používány pouze cookies nezbytně nutné pro zajištění fungování webu, pro které není nutné získat souhlas.
    Theme by 
    Atmire NV
     

     

    Procházet

    Vše v repozitářiTypy publikacíDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

    Můj účet

    Přihlásit seZaregistrovat se

    DSpace software copyright © 2002-2016  DuraSpace
    Kontaktujte nás | Vyjádření názoru | Na tomto webu jsou používány pouze cookies nezbytně nutné pro zajištění fungování webu, pro které není nutné získat souhlas.
    Theme by 
    Atmire NV