Zobrazit minimální záznam

dc.contributor.advisorBodenhofer, Ulrich
dc.contributor.authorHermanutz, Georg
dc.date.accessioned2021-12-08T12:56:04Z
dc.date.available2021-12-08T12:56:04Z
dc.date.issued2017
dc.date.submitted2017-07-21
dc.identifier.urihttps://dspace.jcu.cz/handle/123456789/33959
dc.description.abstractCASPeR - Cardiac surgery prediction tool for risk stratification of heart valve surgeries is presented. The base builds a machine learning pipeline for training a random forest classifier which predicts the mortality after a certain amount of days after the surgery was performed. The classifier also offers a list of potential risk factors through its in build feature selection. With a survival analysis the groups "high-risk" and "low-risk" are compared with each other to check for statistical difference. The tool uses "Shiny" a R package which offers a web frame work to develop data analysis visualizations for the User Interface. CASpeR is delivered as a Microsoft Windows standalone desktop application, that comes with a .exe installer and a detailed manual.cze
dc.format44
dc.format44
dc.language.isoeng
dc.publisherJihočeská univerzitacze
dc.rightsBez omezení
dc.subjectRcze
dc.subjectmachine learningcze
dc.subjectrandom forestcze
dc.subjectShinycze
dc.subjectsurvival analysiscze
dc.subjectKaplan-Meier estimatorcze
dc.subjectheart valve surgerycze
dc.subjecteuroSCOREcze
dc.subjectpredictioncze
dc.subjectpredictive medicinecze
dc.subjectReng
dc.subjectmachine learningeng
dc.subjectrandom foresteng
dc.subjectShinyeng
dc.subjectsurvival analysiseng
dc.subjectKaplan-Meier estimatoreng
dc.subjectheart valve surgeryeng
dc.subjecteuroSCOREeng
dc.subjectpredictioneng
dc.subjectpredictive medicineeng
dc.titleSoftware using random forest for risk prediction of heart valve surgery patientscze
dc.title.alternativeSoftware using random forest for risk prediction of heard valve surgery patientseng
dc.typebakalářská prácecze
dc.identifier.stag52338
dc.description.abstract-translatedCASPeR - Cardiac surgery prediction tool for risk stratification of heart valve surgeries is presented. The base builds a machine learning pipeline for training a random forest classifier which predicts the mortality after a certain amount of days after the surgery was performed. The classifier also offers a list of potential risk factors through its in build feature selection. With a survival analysis the groups "high-risk" and "low-risk" are compared with each other to check for statistical difference. The tool uses "Shiny" a R package which offers a web frame work to develop data analysis visualizations for the User Interface. CASpeR is delivered as a Microsoft Windows standalone desktop application, that comes with a .exe installer and a detailed manual.eng
dc.date.accepted2017-09-18
dc.description.departmentPřírodovědecká fakultacze
dc.thesis.degree-disciplineBioinformaticscze
dc.thesis.degree-grantorJihočeská univerzita. Přírodovědecká fakultacze
dc.thesis.degree-nameBc.
dc.thesis.degree-programApplied Informaticscze
dc.description.gradeDokončená práce s úspěšnou obhajoboucze


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v

Zobrazit minimální záznam